

Syngas for Today and Biomethane 2G for Tomorrow as Opportunities to Green the Gas Market

IGRC 2011, Seoul - Thursday 20th October 2011

Olivier BORDELANNE on behalf of Marc PERRIN

GDF SUEZ – Research & Innovation Division - CRIGEN

Digestion and gasification: two different schemes for different biomass

BY PEOPLE FOR PEOPLE

Humid » Biomass and non - ligneous

Biological Pathway Low Power range Low temperatures (35 – 55 °C) **Digestion**

« Dry » Biomass and ligneous

Thermal Pathway Low to High Power range High temperatures (700 to >1500 °C)

Combustion

Gasification

Mature Technologies Heat **CHP**

Biomethane

New Technologies: Heat, CHP, Synthetic Natural Gas

Gasification : Three targeted markets, but with different maturities

Why gasifying wood instead of burn it?

CHP at Tournai (Belgium) 12 MW fuel, 0.3 MWe

CHP Case

- Enhance electricity production compare to conventional technology (HP Steam boiler + Steam Turbine): +30 to + 75%
- Keep independent power and heat production

Material Industry Case (glass, brick, metal, ...)

Unique renewable solution for Direct Heating Furnaces (NG or oil)

Tomorrow

- make NG « out of wood »
- Decentralized Energy Plant Concept:
 - Fuel for vehicles
 - Grid gas
 - Electricity
 - Heat
 - Cooling

■ Wood gasification: How it works?

REPOTEC Technology (FICFB): Main Characteristics

Keys figures of a CHP Gasification Plant

- Power from engine(s) + 1 ORC from 2.5 to 10 MWe, 25 000 to 100 000 t wood / year
- Heat up to 50% from 4 MW to 16 MW
- Power and Heat Production during 20 years, 7 800 h / y

BioVive Project: from vineyard biomass to glass melting

Goals and stakes

- Development of a Biogas Syngas Production Technology for Glass Melting Furnaces,
- Saint Gobain Verralia coordinated Project, supported by the French National Research Agency.

Progress

- Xylowatt gasifier (1 MW fuel) delivered at GDF SUEZ
 Research Center (St Denis, near Paris)
- Connection to a 2 MW Combustion Test Cell (Glass Furnace model),
- Combustion Test in Glass Melting Furnace conditions (800°C preheated air, 1 200°C furnace tem.) with different fuel mix (natural and syngas)
- Gasifier to be transported newt year to St Gobain Oiry site to be hooked up to Glass Melting Furnace under operation.

GAYA Project: Bio NG "made out of wood"

Coordinator

INSTITUT TECHNOLOGIQUE

Demonstate at a pre-industrial scale the technical, economic, environmental and societal validity of gaseous biofuels by thermochemical production

Bio-methane in few figures

BY PEOPLE FOR PEOPLE

- Bio-methane, a technological choice in terms of local and sustainable biomass development
 - Very high energy yield: 60-70%
 - ▶ Local biomass recovery logic (smaller production units),
 - Reduced transport of the biomass, therefore reducing emissions
 - Enabling the local recovery of all heat produced by the process, which would be difficult for larger installations,
 - ▶ Easy and clean transport of bio-methane via the natural gas grid

2010

Jemo-platform

Validate at a preindustrial scale a portfolio of technological solutions

BY PEOPLE FOR PEOPLE

2018 2010 2012 2014 2016 2020 2022 2024

Pre-industrial scale for biomethane production **Gaya Project**

1st industrial plant

Industrialisation

2017

Industrialization

st

Biomass

Enlarge process boundaries Correlate biomass/syngas Study pre-treatment techniques Study interest of bio-refineries

A 47 M€project with 11 partners federating research & industry

and supported by ADEME

Processes

Technical support for other projects Modelling and simulation of the process Optimisation (efficiency, availability, costs) Optimisation of the syngas characteristics Purification: choice and improvement of the technology Definition of an innovative process

Valorisation

Definition and validation of an innovative process Separation process to fit specifications for injection

Biomass

Processes

Syngas Purification

Methanation

Injection

Transversal studies

Life cycle analysis, energy integration, economic studies. Own GDF SUEZ R&D staff. Keeping up with processes, actors, market. Contact with universities.

Demonstrator's arrangement

BY PEOPLE FOR PEOPLE

IGRC GAYA R&D Platform: site chosen near Lyon

Conclusions & perspectives

Conclusions & perspectives

Gasification, a new route for biomass energy applications:

- A complementary technology to direct combustion .
- A development of an *environmental-friendly industry* in line with a sustainable development approach.
- A local/regional approach to boost energy efficiency by minimising biomass transport

Applications for today and tomorrow:

- New biomass CHP plants with high average biomass to power conversion efficiency (30-34%, thanks to engine use) while keeping a high overall energy efficiency (72-80%).
- Direct firing of syngas into industrial thermal processes where no alternative exists to introduce a share of renewable energy into fuel mix (glass melting, direct drying, metal processing, brick industry, ...).
- Transformation of syngas into a bio-substitute of natural gas, with the same characteristics but *renewable*..

for your attention!

GDF SVez

BY PEOPLE FOR PEOPLE

Contact: marc.perrin@gdfsuez.com